Unified Primal-Fractal Resonance Theory: Bridging Primordial Nucleosynthesis and Cosmic Expansion with Scale-Dependent Fractality

A Jeanneret, Independent Researcher, Assisted by Grok, xAI

May 14, 2025

1 Numerical Example: Evolution of the Fractal Scalar Field $\phi(t)$ phi(t)

We consider the fractal scalar field $\phi(t)$ governed by the following equation of motion:

$$\ddot{\phi} + 3H(t)\dot{\phi} + m_{\phi}^2(\phi - f_{univ}) = 0, \qquad (1)$$

where:

- H(t) is the Hubble expansion rate,
- m_{ϕ} is the effective mass associated with the scalar field,
- $f_{univ} \approx 1.3745$ is the universal harmonic value linked to the fractal cosmic structure.

The goal of this section is to show that, due to the cosmological friction term $3H\dot{\phi}$, the energy associated with ϕ decreases sufficiently rapidly, ensuring that it does not disrupt the standard cosmological evolution at late times.

1.1 Assumptions and Simplifications

For this qualitative study:

• We model H(t) as a simple decreasing function:

$$H(t) = \frac{h_0}{t},\tag{2}$$

where h_0 depends on the cosmological era:

- During the Planck epoch: $h_0 \sim 1$,
- During Big Bang Nucleosynthesis (BBN): $h_0 \sim 0.5 1$,

- At the current epoch: $H(t_0) \sim 2.3 \times 10^{-18} \, s^{-1}$.

- We take $m_{\phi} \approx 8.463 \times 10^{43} \, s^{-1}$ as derived previously.
- We neglect the backreaction of ϕ on H(t), assuming ϕ is subdominant during the radiation and matter eras.

1.2 Early Evolution of $\phi(t)$ phi(t)

Substituting $H(t) = h_0/t$ into Eq. (1) yields:

$$\ddot{\phi} + \frac{3h_0}{t}\dot{\phi} + m_{\phi}^2(\phi - f_{univ}) = 0.$$
(3)

At very early times $(t \rightarrow t_p \sim 10^{-43} s)$, the friction term dominates because 1/t is large:

$$\ddot{\phi} \ll 3H\dot{\phi}.$$

Thus, the approximate equation becomes:

$$3H(t)\dot{\phi} + m_{\phi}^2(\phi - f_{univ}) \approx 0. \tag{4}$$

This leads to a slow evolution of $\phi(t)$ towards f_{univ} , heavily damped by the rapid cosmic expansion.

1.3 Transition to Damped Oscillations

As the Universe expands and t increases, H(t) decreases. When $H(t) \sim m_{\phi}$, the scalar field begins to oscillate significantly around f_{univ} .

At this stage, Eq. (3) becomes that of a damped harmonic oscillator:

$$\phi(t) \approx f_{univ} + A(t)\sin(m_{\phi}t + \delta),$$

where the amplitude A(t) decays due to cosmological friction.

In the asymptotic regime $(t \gg t_p)$, the solution behaves as:

$$\phi(t) \approx f_{univ} + \frac{A_0}{t^{3h_0/2}} \sin(m_{\phi}t + \delta), \qquad (5)$$

where A_0 is determined by initial conditions.

1.4 Energy Associated with ϕ phi

The mean energy density associated with ϕ is:

$$\langle \rho_{\phi} \rangle = \frac{1}{2} \langle \dot{\phi}^2 \rangle + \frac{1}{2} m_{\phi}^2 \langle (\phi - f_{univ})^2 \rangle.$$
 (6)

Given that the amplitude decays as $t^{-3h_0/2}$, the energy density evolves as:

$$\langle \rho_{\phi} \rangle \propto t^{-3h_0}.$$
 (7)

Thus, for $h_0 > 0.5$, the energy density of ϕ decreases rapidly with cosmic time.

1.5 Conclusion of the Numerical Example

In this minimalistic framework:

- At the earliest times $(t \sim t_p)$, $\phi(t)$ is strongly damped and remains close to f_{univ} .
- During later epochs, $\phi(t)$ undergoes small, rapidly damped oscillations around f_{univ} .
- The associated energy density $\langle \rho_{\phi} \rangle$ decreases naturally as the Universe expands, avoiding any disruption to the standard cosmological evolution.

This confirms that the inclusion of a fractal scalar field $\phi(t)$ is physically consistent, provided the natural cosmological damping due to expansion is properly taken into account.